Advertisements
Advertisements
प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
उत्तर
(i) 4 cos2x° – 1 = 0
4 cos2x° = 1
cos2x° = `(1/2)^2`
cosx° = `(1)/(2)`
cosx° = cos60°
x° = 60°
(ii) sin2 x° + cos2x° = sin260° + cos260°
= `(sqrt3/2)^2 + (1/2)^2`
= `(3)/(4) + (1)/(4)`
= 1
(iii) `(1)/(cos^2xx°) – tan^2xx° = (1)/cos^260° – tan^2 60°`
= `(1)/(1/2)^2 – (sqrt3)^2`
= 4 – 3
= 1
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if tan 3 A = 1
Solve the following equation for A, if 2 sin 3 A = 1
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: cot20° cot40° cot45° cot50° cot70°