Advertisements
Advertisements
Question
Find the value of 'A', if cot 3A = 1
Solution
cot 3A = 1
⇒ cot 3A = cot 45°
⇒ 3A = 45°
⇒ A = 15°.
APPEARS IN
RELATED QUESTIONS
If sin x + cos y = 1 and x = 30°, find the value of y
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ