Advertisements
Advertisements
Question
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Solution
sin53° + sec66° - sin50°
= sin(90° - 37°) + sec(90° - 24°) - sin(90° - 40°)
= cos37° + cosec24° - cos40°.
APPEARS IN
RELATED QUESTIONS
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve the following equations for A, if `sqrt3` tan A = 1
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Solve for x : tan2 (x - 5°) = 3
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
Find the value 'x', if:
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A