Advertisements
Advertisements
Question
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Solution
`sqrt3cot` 2 A = 1
cot 2 A = `(1)/(sqrt3)`
cot 2 A = cot 60°
2A = 60°
A = 30°
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
Solve for x : sin2 x + sin2 30° = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If θ < 90°, find the value of: sin2θ + cos2θ
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.