Advertisements
Advertisements
Question
Find:
a. BC
b. AD
c. AC
Solution
a. In right ΔABC,
tan30° = `"AB"/"BC"`
⇒ `(1)/sqrt(3) = (10)/"BC"`
⇒ BC = `10sqrt(3)"cm"`.
b. In ΔABC, ∠C = 30° and ∠B = 90°
⇒ ∠A = 60°
Now, In ΔABD,
cos60° = `"AD"/"AB"`
⇒ `(1)/(2) = "AD"/(10)`
⇒ AD = 5cm
c. In ΔABC,
AC2
= AB2 + BC2
= `10^2 + (10sqrt(30))^2`
= 100 + 300
= 400cm
⇒ AC = 20cm.
APPEARS IN
RELATED QUESTIONS
Solve the following equations for A, if `sqrt3` tan A = 1
Solve for x : sin2 x + sin2 30° = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If θ < 90°, find the value of: sin2θ + cos2θ
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Evaluate the following: sin31° - cos59°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)