Advertisements
Advertisements
Question
Evaluate the following: sin35° sin45° sec55° sec45°
Solution
sin35° sin45° sec55° sec45°
= `sin(90° - 55°) xx (1)/sqrt(2) xx (1)/(cos55°) xx sqrt(2)`
= `cos55° xx (1)/(cos55°) xx (1)/sqrt(2) xx sqrt(2)`
= 1.
APPEARS IN
RELATED QUESTIONS
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'A', if 2 sin 2A = 1
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: sin22° cos44° - sin46° cos68°
Prove the following: sin58° sec32° + cos58° cosec32° = 2