Advertisements
Advertisements
Question
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Solution
cos(A - B) = cosA cosB + sinA sinB
L.H.S. :
cos(60° - 60°) = cos0° = 1
R.H.S. :
cosA cosB + sinA sinB
= cos60° cos60° + sin60° sin60°
= `(1)/(2) xx (1)/(2) + sqrt(3)/(2) xx sqrt(3)/(2)`
= `(1)/(4) + (3)/(4)`
= `(4)/(4)`
= 1
L.H.S. = R.H.S.
Therefore,
cos(A - B) = cosA cosB + sinA sinB.
APPEARS IN
RELATED QUESTIONS
Find the value of 'A', if 2cos 3A = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value of 'x' in each of the following:
Find the value of 'x' in each of the following:
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)