Advertisements
Advertisements
Question
Solve for x : cos (2x - 30°) = 0
Solution
cos (2x – 30°) = 0
cos ( 2x – 30°) = cos 90°
2x – 30° = 90°
2x = 120°
x = 60°
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Find the value 'x', if:
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`