Advertisements
Advertisements
प्रश्न
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
उत्तर
(i) cos x° = `(10)/(20)`
cos x° = `(1)/(2)`
(ii) cos x° = `(1)/(2)`
cos x° = cos 60°
x° = 60°
(iii) `(1)/(tan^2x°) – (1)/(sin^2x°) = (1)/(tan^2 60°) – (1)/(sin^2 60°)`
= `(1)/(sqrt3)^2 – (1)/(sqrt3/2)^2`
= `(1)/(3) – (4)/(3)`
= – 1
(iv) tan x° = tan 60°
= `sqrt3`
We know that tan x° = `"AB"/"BC"`
⇒ tan x° = `"y"/(10)`
⇒ y = 10 tan x°
⇒ y = 10 tan 60°
⇒ y = 10`sqrt3`
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
Find the value of 'A', if 2 cos A = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Find the value of 'x' in each of the following:
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`