Advertisements
Advertisements
प्रश्न
Find the value of 'x' in each of the following:
उत्तर
From the figure, we have
cos x = `"AB"/"AC"`
⇒ cos x = `(12)/(24)`
⇒ cos x = `(1)/(2)`
⇒ cos x = cos60°
⇒ x = 60°.
APPEARS IN
संबंधित प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Solve for x : 3 tan2 (2x - 20°) = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
Find the value 'x', if:
Find the value 'x', if:
Evaluate the following: `(sin62°)/(cos28°)`