Advertisements
Advertisements
प्रश्न
Solve for x : 2 cos (3x - 15°) = 1
उत्तर
2 cos(3x –15°) = 1
cos (3x – 15°) = `(1)/(2)`
cos (3x – 15°) = cos 60°
3x – 15° = 60°
3x = 75°
x = 25°
APPEARS IN
संबंधित प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : sin (x + 10°) = `(1)/(2)`
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value of 'x' in each of the following:
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A