Advertisements
Advertisements
Question
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
Solution
Consider the given figure :
Since the triangle is a right-angled triangle, so using Pythagorean Theorem
AD2 = 82 + 62
AD2 = 64 + 36 = 100
AD = 10
Also
BC2 = AC2 – AB2
BC2 = 172 – 82 = 225
BC = 15
(i) sin x° = `"perpendicular"/"hypotenuse" = (8)/(17)`
(ii) cos y° = `"base"/"hypotenuse" = (6)/(10) =(3)/(5)`
(iii) sin y° = `"perpendicular"/"hypotenuse" = "AB"/"AD" = (8)/(10) = (4)/(5)`
cos y° = `"base"/"hypotenuse" = (6)/(10) = (3)/(5)`
tan x° = `"perpendicular"/"base" = "AB"/"BC" = (8)/(15)`
Therefore
3tan x° – 2sin y° + 4 cos y°
= `3 (8/15) – 2 (4/5) + 4 (3/5)`
= `(8)/(5) – (8)/(5) + (12)/(5)`
= `2(2)/(5)`
APPEARS IN
RELATED QUESTIONS
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ
Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.