Advertisements
Advertisements
Question
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
Solution
sec B = `(15)/(12)`
sec B = `(1)/"cos B" = "Hypotenuse"/"Base" = (15)/(12)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Perpendicular = `sqrt(("Hypotenuse")^2 - ("Base")^2`
⇒ Perpendicular
= `sqrt((15)^2 - (12)^2`
= `sqrt(225 - 144)`
= `sqrt(81)`
= 9
sinB = `"Perpendicular"/"Hypotenuse" = (9)/(15)`
tanB = `"Perpendicular"/"Base" = (9)/(12)`
cotB = `(1)/"tan B" = (12)/(9)`
cosecB = `(1)/"sinB" = (15)/(9)`
cos B = `"Base"/"Hypotenuse" = (12)/(15)`.
APPEARS IN
RELATED QUESTIONS
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
In Fig below, Find tan P and cot R. Is tan P = cot R?
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A