Advertisements
Advertisements
प्रश्न
Solve for x : `1/(2a + b + 2x) =1/(2a) + 1/b + 1/(2x); x ≠ 0, x ≠ (−2a −b)/2`, a, b ≠ 0
उत्तर
`1/(2a+b+2x) =1/(2a) + 1/b + 1/(2x)`
`1/(2a+b+2x) −1/(2x) =1/(2a) +1/b`
`(2x−2a−b−2x)/(4ax+2bx+4x^2) =(b+2a)/(2ab)`
`(−2a−b)(2ab)=(b+2a)(4ax+2bx+4x^2)`
`(−(b+2a)(2ab))/(b+2a)=(4ax+2bx+4x^2)`
− (2ab) = 4ax + 2bx + 4x2
4x2 + 2bx + 4ax + 2ab = 0
2x( 2x + b ) + 2a( 2x + b) = 0
(2x + 2a)(2x + b) = 0
⇒ (2x + 2a) = 0
⇒ x = − a
or
(2x + b) = 0
⇒ x = `− b/2`
Therefore, values of x are − a and `− b/2`.
APPEARS IN
संबंधित प्रश्न
If one of the roots of the quadratic equation x2 - 11x + k = 0 is 9, then find the value of k
If the equation `x^2-5x+1=0` has no real roots then
(a)`k<-2`
(b)`k>2`
(c) `-2<k<2`
(d) None of these
If 1 is a root of the equation `ay^2+ay+3=0` and `y^2+y+b=0` then find the value of ab.
Find the value of k for which the quadratic equation `9x^2-3kx+k=0` has equal roots.
Solve` 2x^2+ax-a^2=0`
Solve` 4sqrt3x^2+5x-2sqrt3=0`
Write the following equation in the form ax2 + bx + c= 0, then write the values of a, b, c for the equation.
x2 + 5x = –(3 – x)
Which one is the quadratic equation?
is the following equation quadratic?
\[\left( x + 2 \right)^2 = 2 x^2\]
Solve the following quadratic equation.
`1/(x + 5) = 1/x^2`