हिंदी

A circle touches side BC at point P of the ΔABC, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न


A circle touches side BC at point P of the ΔABC, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that : AM = `1/2` (Perimeter of ΔABC)

योग

उत्तर

Since two tangents drawn from an external point to a circle are equal, we establish the following equalities:

  • AM = AN
  • BP = BM
  • CP = CN

The perimeter of △ABC is: AB + BC + CA

Substituting in terms of tangents: (AM + BM) + (BP + PC) + (CN + AN)

AM + AN + (BM + BP) + (CN + CP)

AM + AN + BM + CN + BP + CP

Since BM = BP and CN = CP, we simplify to:

AM + AN + BP + BM + CP + CN = 2(AM + BP + CP)

Since BP + CP = BC, we get:

`AM + AN = 1/2 xx` Perimeter of △ABC

`AM = 1/2 xx` Perimeter of △ABC

shaalaa.com
Tangent Segment Theorem
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

संबंधित प्रश्न

In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

  1. What is the length of each tangent segment?
  2. What is the measure of ∠MRO?
  3. What is the measure of ∠MRN?


Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.


In the given figure, seg EF is a diameter and seg DF is a tangent segment. The radius of the circle is r. Prove that, DE × GE = 4r2


Four alternative answers for the following question is given. Choose the correct alternative.
 Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is 12 cm, find the diameter of the circle.


In the given figure, O is the centre of the circle. Seg AB, seg AC are tangent segments. Radius of the circle is r and l(AB) = r, Prove that ▢ABOC is a square. 

Proof: Draw segment OB and OC.

l(AB) = r      ......[Given] (I)

AB = AC    ......[`square`] (II)

But OB = OC = r    ......[`square`] (III)

From (i), (ii) and (iii)

AB = `square` = OB = OC = r

∴ Quadrilateral ABOC is `square`

Similarly, ∠OBA = `square`      ......[Tangent Theorem]

If one angle of `square` is right angle, then it is a square.

∴ Quadrilateral ABOC is a square.


In the following figure ‘O’ is the centre of the circle.

∠AOB = 1100, m(arc AC) = 450.

Use the information and fill in the boxes with proper numbers.

(i) m(arcAXB) =

(ii)m(arcCAB) =
(iv)∠COB =

(iv)m(arcAYB) =


The perpendicular height of a cone is 12 cm and its slant height is 13 cm. Find the radius of the base of the cone. 


In the given figure, M is the centre of the circle and seg KL is a tangent segment. L is a point of contact. If MK = 12, KL = `6sqrt3`, then find the radius of the circle.


The chords corresponding to congruent arcs of a circle are congruent. Prove the theorem by completing following activity.

Given: In a circle with centre B 

arc APC ≅ arc DQE

To Prove: Chord AC ≅ chord DE

Proof: In ΔABC and ΔDBE,

side AB ≅ side DB    ......`square`

side BC ≅ side `square`    .....`square`

∠ABC ≅ ∠DBE    ......[Measure of congruent arcs]

∆ABC ≅ ∆DBE    ......`square`


Length of a tangent segment drawn from a point which is at a distance 15 cm from the centre of a circle is 12 cm, find the diameter of the circle?


Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects ∠MRN as well as ∠MON with the help of activity.


Proof: In ∆RMO and ∆RNO,

∠RMO ≅ ∠RNO = 90°   ......[`square`]

hypt OR ≅ hypt OR    ......[`square`]

seg OM ≅ seg `square`    ......[Radii of the same circle]

∴ ∆RMO ≅ ∆RNO      ......[`square`]

∠MOR ≅ ∠NOR

Similairy ∠MRO ≅ `square`    ......[`square`]


Prove that, tangent segments drawn from an external point to the circle are congruent.


In a parallelogram ABCD, ∠B = 105°. Determine the measure of ∠A and ∠D.


In the following figure, XY = 10 cm and LT = 4 cm. Find the length of XT.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×