Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
उत्तर
Given: A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C
Now, A2 = A × A
= `[(1, 3),(3, 4)] xx [(1, 3),(3, 4)]`
= `[(1 xx 1 + 3 xx 3, 1 xx 3 + 3 xx 4),(3 xx 1 + 4 xx 3, 3 xx 3 + 4 xx 4)]`
= `[(1 + 9, 3 + 12),(3 + 12, 9 + 16)]`
= `[(10, 15),(15, 25)]`
And B2 = B × B
= `[(-2, 1),(-3, 2)] xx [(-2, 1),(-3, 2)]`
= `[(-2 xx (-2) + 1 xx (-3), -2 xx 1 + 1 xx 2),(-3 xx (-2) + 2 xx (-3), -3 xx 1 + 2 xx 2)]`
= `[(4 - 3, -2 + 2),(6 - 6, -3 + 4)]`
= `[(1, 0),(0, 1)]`
Now, A2 – 5B2 = `[(10, 15),(15, 25)] - 5[(1, 0),(0, 1)]`
= `[(10, 15),(15, 25)] - [(5, 0),(0, 5)]`
= `[(5, 15),(15, 20)]`
= `5[(1, 3),(3, 4)]`
= 5C
Hence, C = `[(1, 3),(3, 4)]`
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
Evaluate:
`3[(5, -2)]`
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C