Advertisements
Advertisements
Question
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Solution
Given: A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C
Now, A2 = A × A
= `[(1, 3),(3, 4)] xx [(1, 3),(3, 4)]`
= `[(1 xx 1 + 3 xx 3, 1 xx 3 + 3 xx 4),(3 xx 1 + 4 xx 3, 3 xx 3 + 4 xx 4)]`
= `[(1 + 9, 3 + 12),(3 + 12, 9 + 16)]`
= `[(10, 15),(15, 25)]`
And B2 = B × B
= `[(-2, 1),(-3, 2)] xx [(-2, 1),(-3, 2)]`
= `[(-2 xx (-2) + 1 xx (-3), -2 xx 1 + 1 xx 2),(-3 xx (-2) + 2 xx (-3), -3 xx 1 + 2 xx 2)]`
= `[(4 - 3, -2 + 2),(6 - 6, -3 + 4)]`
= `[(1, 0),(0, 1)]`
Now, A2 – 5B2 = `[(10, 15),(15, 25)] - 5[(1, 0),(0, 1)]`
= `[(10, 15),(15, 25)] - [(5, 0),(0, 5)]`
= `[(5, 15),(15, 20)]`
= `5[(1, 3),(3, 4)]`
= 5C
Hence, C = `[(1, 3),(3, 4)]`
APPEARS IN
RELATED QUESTIONS
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`