Advertisements
Advertisements
Question
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
Solution
We have
A = `[(1 , 0),(-1 ,7)]`
A2 = AA = `[(1 , 0),(-1 ,7)][(1 , 0),(-1 ,7)]`
= `[(1 , 0),(-8 ,49)]`
And 8A + kI = 8 `[(1 , 0),(-1 ,7)] +k [(1 , 0),(0 ,1)]`
= `[(8 , 0),(-8 , 56)] + [(k , 0),(0 , k)]`
= `[(8 + k , 0),(-8 , 56 + k)]`
Thus A2 = 8A + kI
⇒ `[(1 , 0),(-8 ,49)] = [(8 + k , 0),(-8 , 56 + k)]`
⇒ 1 = 8 + k
⇒ k = -7
Also 56 + k = 49
⇒ k = -7.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If P = (8 , 5),(7 , 2) , find Pt
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`