Advertisements
Advertisements
प्रश्न
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
उत्तर
`|(2 , -5),(0 , -3)|_(2 xx 2) |(1 , -1),(3 , 2)|_(2 xx 2)`
= `|(2 - 15 , -2-10),(0 - 9 , 0 - 6)|`
= `|(-13 , -12),(-9 , -6)|_(2 xx 2)`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I