Advertisements
Advertisements
Question
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
Solution
A = `[(1 , 1),(8 , 3)]`
A2 = A x A = `[(1, 1),(8 , 3)][(1 , 1),(8 , 3)]`
= `[(1 + 8 , 1 + 3),(8 + 24, 8 + 9)] = [(9 , 4),(32 , 17)]`
4A = `4[(1 , 1),(8 , 3)] = [(4 , 4),(32 , 12)]`
A2 - 4A = `[(9 , 4),(32 , 17)] - [(4 , 4),(32 , 12)]`
= `[(9 - 4, 4 - 4),(32 - 32, 17 - 12)]`
A2 - 4A = `[(5 , 0),(0 , 5)]`.
APPEARS IN
RELATED QUESTIONS
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.
Choose the correct answer from the given four options :
A = `[(1, 0),(0, 1)]` then A2 =
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: A2 – B2