Advertisements
Advertisements
प्रश्न
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
उत्तर
A = `[(1 , 1),(8 , 3)]`
A2 = A x A = `[(1, 1),(8 , 3)][(1 , 1),(8 , 3)]`
= `[(1 + 8 , 1 + 3),(8 + 24, 8 + 9)] = [(9 , 4),(32 , 17)]`
4A = `4[(1 , 1),(8 , 3)] = [(4 , 4),(32 , 12)]`
A2 - 4A = `[(9 , 4),(32 , 17)] - [(4 , 4),(32 , 12)]`
= `[(9 - 4, 4 - 4),(32 - 32, 17 - 12)]`
A2 - 4A = `[(5 , 0),(0 , 5)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute A(B + C)
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA