Advertisements
Advertisements
प्रश्न
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
उत्तर
Let C = `[(a),(b)]` then
AC = B
⇒ `[(3 , 1),(-1 , 2)][(a),(b)] = [(7),(0)]`
⇒ `[(3a + b),(-a + 2b)] = [(7),(0)]`
⇒ 3a + b = 7 ...(1)
- a + 2b = 0 ...(2)
From equation (1),
6a + 2b = 14 ...(3)
From (3) - (2) given
7a = 14
⇒ a = 2
Put a = 2 in (1), we get
6 + b = 7
⇒ b = 7 - 6 = 1
∴ C = `[(2),(1)]`.
APPEARS IN
संबंधित प्रश्न
If `A = [(3, x),(0, 1)]` and `B = [(9, 16),(0, -y)]` Find x and y when `A^2 = B`
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.