Advertisements
Advertisements
प्रश्न
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
उत्तर
Yes, the product is possible because of
number of column in A = number of row in B
i.e., (2 x 2). (2 x 1) = (2 x 1) is the order of the matrix.
AB = `[(3, 5),(4, -2)] [(2),(4)]`
= `[(3 xx 2 + 5 xx 4),(4 xx 2 + (-2) xx 4)]`
= `[(6 + 20),(8 - 8)]`
= `[(26),(0)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: A2 – B2