Advertisements
Advertisements
प्रश्न
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
उत्तर
Given that
A = `[(1, 0),(2, 1)]`
B = `[(2, 3),(-1, 0)]`
A2 = A x A = `[(1, 0),(2, 1)] xx [(1, 0),(2, 1)]`
= `[(1 xx 1 + 0 xx 2, 1 xx 0 + 0 xx 1),(2 xx 1 + 1 xx 2, 2 xx 0 + 1 xx 1)]`
= `[(1 + 0, 0 + 0),(2+ 2, 0+ 1)]`
= `[(1, 0),(4, 1)]`
A x B = `[(1, 0),(2, 1)] xx [(2, 3),(-1, 0)]`
= `[(1 xx 2 + 0 xx -1 , 1 xx 3 + 0 xx 0),(2 xx 2 + 1 xx 1, 2 xx 3 + 1 xx 0)]`
= `[(2, 3),(3, 6)]`
B2 = B x B = `[(2, 3),(-1, 0)] xx [(2, 3),(-1, 0)]`
= `[(2 xx 2 + 3 xx (-1), 2 xx 3 + 3 xx 0),(-1 xx 2 + 0 xx (-1), -1 xx 3 + 0 xx 0)]`
= `[(4 - 3, 6 + 0),(-2 + 0, -3 + 0)]`
= `[(1, 6),(-2, -3)]`
A2 + AB + B2 = `[(1, 0),(4, 1)] + [(2, 3),(3, 6)] + [(1, 6),(-2, -3)]`
= `[(1 + 2 + 1, 0 + 3 + 6),(4 + 3 - 2, 1 + 6 + -3)]`
= `[(4, 9),(5, 4)]`.
APPEARS IN
संबंधित प्रश्न
If `A = [(3, x),(0, 1)]` and `B = [(9, 16),(0, -y)]` Find x and y when `A^2 = B`
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.