Advertisements
Advertisements
Question
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Solution
Given that
A = `[(1, 0),(2, 1)]`
B = `[(2, 3),(-1, 0)]`
A2 = A x A = `[(1, 0),(2, 1)] xx [(1, 0),(2, 1)]`
= `[(1 xx 1 + 0 xx 2, 1 xx 0 + 0 xx 1),(2 xx 1 + 1 xx 2, 2 xx 0 + 1 xx 1)]`
= `[(1 + 0, 0 + 0),(2+ 2, 0+ 1)]`
= `[(1, 0),(4, 1)]`
A x B = `[(1, 0),(2, 1)] xx [(2, 3),(-1, 0)]`
= `[(1 xx 2 + 0 xx -1 , 1 xx 3 + 0 xx 0),(2 xx 2 + 1 xx 1, 2 xx 3 + 1 xx 0)]`
= `[(2, 3),(3, 6)]`
B2 = B x B = `[(2, 3),(-1, 0)] xx [(2, 3),(-1, 0)]`
= `[(2 xx 2 + 3 xx (-1), 2 xx 3 + 3 xx 0),(-1 xx 2 + 0 xx (-1), -1 xx 3 + 0 xx 0)]`
= `[(4 - 3, 6 + 0),(-2 + 0, -3 + 0)]`
= `[(1, 6),(-2, -3)]`
A2 + AB + B2 = `[(1, 0),(4, 1)] + [(2, 3),(3, 6)] + [(1, 6),(-2, -3)]`
= `[(1 + 2 + 1, 0 + 3 + 6),(4 + 3 - 2, 1 + 6 + -3)]`
= `[(4, 9),(5, 4)]`.
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`