Advertisements
Advertisements
Question
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Solution
A = `[(-1, 1),(a, b)]`
A2= `[(-1, 1),(a, b)][(-1, 1),(a, b)]`
= `[((-1) xx (-1) + 1 xx a, -1 xx 1 + 1 xx b),(a xx (-1) + b xx a, a xx 1 + b xx b)]`
= `[(1 + a, -1 + b),(-a + ab, a + b^2)]`
It is given that A2 = I.
∴ `[(1 + a, -1 + b),(-a + ab, a + b^2)] = [(1, 0),(0, 1)]`
Comparing the corresponding elements, we get,
1 + a = 1
Therefore, a = 0
–1 + b = 0
Therefore, b = 1
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =