Advertisements
Advertisements
प्रश्न
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
उत्तर
A = `[(-1, 1),(a, b)]`
A2= `[(-1, 1),(a, b)][(-1, 1),(a, b)]`
= `[((-1) xx (-1) + 1 xx a, -1 xx 1 + 1 xx b),(a xx (-1) + b xx a, a xx 1 + b xx b)]`
= `[(1 + a, -1 + b),(-a + ab, a + b^2)]`
It is given that A2 = I.
∴ `[(1 + a, -1 + b),(-a + ab, a + b^2)] = [(1, 0),(0, 1)]`
Comparing the corresponding elements, we get,
1 + a = 1
Therefore, a = 0
–1 + b = 0
Therefore, b = 1
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
If A =` [(1,-2 ,1),(2,1,3)]and B=[(2,1),(3,2),(1,1)]`
would it be possible to form the product matrix BA? If so, compute BA; if not give a reason
why it is not possible.
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.