Advertisements
Advertisements
प्रश्न
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
उत्तर
We have aij = 2i - j
Now a11 = 2 x 1 - 1 = 1
a12 = 2 x 1 - 2 = 0
a21 = 2 x 2 - 1 = 3
a22 = 2 x 2 - 2 = 2
So the required matrix
A = `[(a_11 ,a_12),(a_21, a_22)]`
A = `[(1, 0),(3, 2)]`.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B