Advertisements
Advertisements
प्रश्न
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
उत्तर
We know that,
cos 60° = `1/2`, sin 30° = `1/2`, tan 45° = 1, cos 0° = 1
tan 45° = 1, cosec 30° = 2, sec 60° = 2, sin 90° = 1
Now `[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
= `[(2 xx 1/2, -2 xx 1/2),(-1, 1)][(1, 2),(2,1)]`
= `[(1, -1),(-1, 1)][(1, 2),(2, 1)]`
= `[(1 xx 1 + (-1) xx 2, 1 xx 2 + (-1) xx 1),(-1 xx 1 + 1 xx 2, -1 xx 2 + 1 xx 1)]`
= `[(1 - 2, 2 - 1),(-1 + 2, -2 + 1)]`
= `[(-1, 1),(1, -1)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.