Advertisements
Advertisements
प्रश्न
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
उत्तर
`B^2 = B+1/2A`
`A = 2 (B^2 - B)`
`B^2 = [(2,1),(0,1)][(2,1),(0,1)]`
= `[(4,+0,2,+1),(0,+0,0,+1)]`
= `[(4,3),(0,1)]`
= `B^2-B = [(4,3),(0,1)]-[(2,1),(0,1)]`
= `[(2,2),(0,0)]`
`A = 2(B^2 - B)`
= `2[(2,2),(0,0)]=[(4,4),(0,0)]`
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B