Advertisements
Advertisements
प्रश्न
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
उत्तर
i.
A + B = `[(1, 4),(1, -3)] + [(1, 2),(-1, -1)]`
= `[((1 + 1, 4 + 2)),((1 - 1, - 3 - 1))]`
= `[(2, 6),(0, -4)]`
Now, (A + B)2 = (A + B)(A + B)
= `[(2, 6),(0, -4)] [(2, 6),(0, -4)]`
= `[((2)(2) + (6)(0), (2)(6) + (6)(-4)), ((0)(2) + (-4)(0), (0)(6) + (-4)(-4))]`
= `[(4, -12),(0, 16)]`
ii.
A2 = `[(1, 4), (1, -3)][(1, 4), (1, -3)]`
= `[(1 + 4, 4 - 12),(1 - 3, 4 + 9)]`
= `[(5, -8),(-2, 13)]`
B2 = `[(1, 2),(-1, -1)][(1,2),(-1, -1)]`
`[(1 -2, 2 - 2),(-1 + 1, -2 + 1)]`
`[(-1, 0),(0, -1)]`
A2 + B2 = `[(5, -8),(-2, 13)] + [(-1, 0),(0, -1)]`
A2 + B2 = `[(4, -8),(-2, 12)]`
iii. No, (A + B)2 ≠ A2 + B2.
APPEARS IN
संबंधित प्रश्न
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of (R + Q)P
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`