Advertisements
Advertisements
प्रश्न
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
उत्तर
i.
A + B = `[(1, 4),(1, -3)] + [(1, 2),(-1, -1)]`
= `[((1 + 1, 4 + 2)),((1 - 1, - 3 - 1))]`
= `[(2, 6),(0, -4)]`
Now, (A + B)2 = (A + B)(A + B)
= `[(2, 6),(0, -4)] [(2, 6),(0, -4)]`
= `[((2)(2) + (6)(0), (2)(6) + (6)(-4)), ((0)(2) + (-4)(0), (0)(6) + (-4)(-4))]`
= `[(4, -12),(0, 16)]`
ii.
A2 = `[(1, 4), (1, -3)][(1, 4), (1, -3)]`
= `[(1 + 4, 4 - 12),(1 - 3, 4 + 9)]`
= `[(5, -8),(-2, 13)]`
B2 = `[(1, 2),(-1, -1)][(1,2),(-1, -1)]`
`[(1 -2, 2 - 2),(-1 + 1, -2 + 1)]`
`[(-1, 0),(0, -1)]`
A2 + B2 = `[(5, -8),(-2, 13)] + [(-1, 0),(0, -1)]`
A2 + B2 = `[(4, -8),(-2, 12)]`
iii. No, (A + B)2 ≠ A2 + B2.
APPEARS IN
संबंधित प्रश्न
Find x and y if `3[(4, x)] + 2[(y, -3)] = [(10, 0)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find A2
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
If A = `[(2, 0),(-3, 1)]` and B = `[(0, 1),(-2, 3)]` find 2A – 3B
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.