Advertisements
Advertisements
प्रश्न
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
उत्तर
`[(6, 4),(3, -1)][(-1, 3)]`
The number of columns in the first matrix is not equal to the number of rows in the second matrix.
Thus, the product is not possible.
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find B2A
Given A = `[(4, 1),(2,3)]` and B = `[(1, 0),(-2, 1)]`, find A – B
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.