Advertisements
Advertisements
प्रश्न
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find B2A
उत्तर
B2 = `[(1, -1),(3, 2)][(1, -1), (3, 2)]`
= `[(1 xx 1 + (-1) xx 3, 1 xx -1 + (-1) xx 2),(3 xx 1 + 2 xx 3, 3 xx (-1) + 2 xx 2)]`
= `[(1- 3, -1-2),(3 + 6, -3 + 4)]`
= `[(-2 ,-3),(9, 1)]`
B2A = `[(-2, -3),(9, 1)][(0, 2),(5, -2)]`
= `[(-2 xx 0 + (-3) xx 5, (-2) xx 2 + (-3) xx (-2)),(9 xx 0 + 1 xx 5, 9 xx 2 + 1 xx (-2))]`
= `[(0 - 15, -4 + 6),(0+ 5, 18 - 2)]`
= `[(-15, 2),(5, 16)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.
Given A = `[(4, 7),(3, -2)]` and B = `[(1, 2),(-1, 4)]`, then A – 2B is ______.