Advertisements
Advertisements
प्रश्न
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
उत्तर
B – A = `[(2, 3),(4, 1)] - [(2, 1),(0, 0)] = [(0, 2),(4, 1)]`
(B – A)C = `[(0, 2),(4, 1)][(1, 4),(0, 2)]`
= `[(0, 0 + 4),(4 + 0, 16 + 2)]`
= `[(0, 4),(4, 18)]`
BC = `[(2, 3),(4, 1)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 6),(4 + 0, 16 + 2)]`
= `[(2, 14),(4, 18)]`
AC = `[(2, 1),(0, 0)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 2),(0, 0)]`
= `[(2, 10),(0, 0)]`
BC – AC = `[(2, 14),(4, 18)] - [(2, 10),(0,0)]`
= `[(0, 4),(4, 18)]`
Hence, (B – A)C = BC – AC
APPEARS IN
संबंधित प्रश्न
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
If A = `[(2, 0),(-3, 1)]` and B = `[(0, 1),(-2, 3)]` find 2A – 3B
If A = `[(1, 4),(2, 3)]` and B = `[(1, 2),(3, 1)]` Compute 3A + 4B
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`
If A = `[(5, 5),(4, 0)]`, B = `[(3, 2),(1, 4)]` and C = `[(-2, 3),(2, 1)]` then matrix (A + B – C) is ______.
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.