Advertisements
Advertisements
प्रश्न
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
उत्तर
B + C = `[(2, 3),(4, 1)] + [(1, 4),(0, 2)] = [(3, 7),(4, 3)]`
A(B + C) = `[(2, 1),(0, 0)][(3, 7),(4, 3)]`
= `[(6 + 4, 14 + 3),(0 ,0)]`
= `[(10, 17),(0 ,0)]`
AB = `[(2, 1),(0, 0)][(2, 3),(4, 1)]`
= `[(4 + 4, 6 + 1),(0, 0)]`
= `[(8, 7),(0, 0)]`
AC = `[(2, 1),(0, 0)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 2),(0, 0)]`
= `[(2, 10),(0, 0)]`
AB + AC = `[(8, 7),(0, 0)] + [(2, 10),(0, 0)]`
= `[(10, 17),(0, 0)]`
Hence, A(B + C) = AB + AC
APPEARS IN
संबंधित प्रश्न
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
Evaluate if possible `[(3, 2)][(2),(0)]`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.