Advertisements
Advertisements
Question
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
Solution
B + C = `[(2, 3),(4, 1)] + [(1, 4),(0, 2)] = [(3, 7),(4, 3)]`
A(B + C) = `[(2, 1),(0, 0)][(3, 7),(4, 3)]`
= `[(6 + 4, 14 + 3),(0 ,0)]`
= `[(10, 17),(0 ,0)]`
AB = `[(2, 1),(0, 0)][(2, 3),(4, 1)]`
= `[(4 + 4, 6 + 1),(0, 0)]`
= `[(8, 7),(0, 0)]`
AC = `[(2, 1),(0, 0)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 2),(0, 0)]`
= `[(2, 10),(0, 0)]`
AB + AC = `[(8, 7),(0, 0)] + [(2, 10),(0, 0)]`
= `[(10, 17),(0, 0)]`
Hence, A(B + C) = AB + AC
APPEARS IN
RELATED QUESTIONS
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : 3A + X = B
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(7, 0),(10, 5)]` Find the values of x and y
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.