Advertisements
Advertisements
Question
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
Solution
B – A = `[(2, 3),(4, 1)] - [(2, 1),(0, 0)] = [(0, 2),(4, 1)]`
(B – A)C = `[(0, 2),(4, 1)][(1, 4),(0, 2)]`
= `[(0, 0 + 4),(4 + 0, 16 + 2)]`
= `[(0, 4),(4, 18)]`
BC = `[(2, 3),(4, 1)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 6),(4 + 0, 16 + 2)]`
= `[(2, 14),(4, 18)]`
AC = `[(2, 1),(0, 0)][(1, 4),(0, 2)]`
= `[(2 + 0, 8 + 2),(0, 0)]`
= `[(2, 10),(0, 0)]`
BC – AC = `[(2, 14),(4, 18)] - [(2, 10),(0,0)]`
= `[(0, 4),(4, 18)]`
Hence, (B – A)C = BC – AC
APPEARS IN
RELATED QUESTIONS
Evaluate `2[(-1, 0),(2, -3)] + [(3,3),(5,0)]`
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Given `A = [(1, 4),(2, 3)] and B = |(-4-1),(-3 -2)|`
Find the matrix 2A + B
If `M = [(0), (1)]` and `N = [(1),(0)]`, show that `3M + 5N = [(5),(3)]`
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(7, 0),(10, 5)]` Find the values of x and y
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y