Advertisements
Advertisements
Question
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
Solution
`[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]`
⇒ `[(5, 2),(-1, y + 1)] - [(2, 4x - 2),(6, -4)] = [(3, -8),(-7, 2)]`
⇒ `[(5 - 2, 2 - 4x + 2),(-1 - 6, y + 1 + 4)] = [(3, -8),(-7, 2)]`
⇒ `[(3, 4 - 4x),(-7, y + 5)] = [(3, -8),(-7, 2)]`
Comparing the corresponding terms, we get
4 – 4x = –8
⇒ –4x = –8 – 4
⇒ –4x = –12
⇒ x = `(-12)/(-4)` = 3
and
y + 5 = 2
⇒ y = 2 – 5 = –3
∴ x = 3, y = –3.
APPEARS IN
RELATED QUESTIONS
Find x and y if `3[(4, x)] + 2[(y, -3)] = [(10, 0)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
If A = `[(3, -5),(-4, 2)]` find A2 – 5A – 14I
Where I is unit matrix of order 2 x 2