Advertisements
Advertisements
Question
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Solution
`M - 2I = 3[(-1, 0),(4, 1)]`
`M = 3[(-1, 0),(4, 1)] + 2I`
`M = 3[(-1, 0),(4, 1)] + 2[(1, 0),(0, 1)]`
`M = [(-3, 0),(12, 3)] + [(2, 0),(0, 2)]`
`M = [(-1, 0),(12, 5)]`
APPEARS IN
RELATED QUESTIONS
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If `M = [(0), (1)]` and `N = [(1),(0)]`, show that `3M + 5N = [(5),(3)]`
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : X – 3B = 2A
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
If A = `[(5, 5),(4, 0)]`, B = `[(3, 2),(1, 4)]` and C = `[(-2, 3),(2, 1)]` then matrix (A + B – C) is ______.
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.