Advertisements
Advertisements
Question
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Solution
Let C = `[(a , b),(c ,d)]`
We have A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
Now 5A + 3B + 2C = 0
⇒ `5[(9 , 1),(7 , 8)]+3 [(1 , 5),(7 , 12)]+2[(a , b),(c , d)] = [(0 , 0),(0 , 0)]`
⇒ `[(45 , 5),(35 , 40)]+ [(3 , 15),(21 , 36)]+[(2a , 2b),(2c , 2d)] = [(0 , 0),(0 , 0)]`
⇒ `[(45 + 3 + 2a, 5 + 15 + 2b),(35 + 21 + 2c, 40 + 36 + 2d)] = [(0 , 0),(0 , 0)]`
⇒ `[(48 + 2a , 20 + 2b),(56 + 2c , 76 + 2d)] = [(0 , 0),(0 , 0)]`
⇒ 48 + 2a = 0 ⇒ 2a = -48 ⇒ a = -24
20 + 2b = 0 ⇒ 2b = 20 ⇒ b = -10
56 + 2c = 0 ⇒ 2c = 56 ⇒ c = -28
76 + 2d = 0 ⇒ 2d = -76 ⇒ d = -38
Thus C = `[(-24 , -10),(-28, -38)]`.
APPEARS IN
RELATED QUESTIONS
Let `A = [(2,1),(0,-2)], B = [(4,1),(-3,-2)] and C = [(-3,2),(-1,4)]`. Find `A^2 + AC - 5B`
Evaluate if possible `[(3, 2)][(2),(0)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.