Advertisements
Advertisements
प्रश्न
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
उत्तर
Let C = `[(a , b),(c ,d)]`
We have A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
Now 5A + 3B + 2C = 0
⇒ `5[(9 , 1),(7 , 8)]+3 [(1 , 5),(7 , 12)]+2[(a , b),(c , d)] = [(0 , 0),(0 , 0)]`
⇒ `[(45 , 5),(35 , 40)]+ [(3 , 15),(21 , 36)]+[(2a , 2b),(2c , 2d)] = [(0 , 0),(0 , 0)]`
⇒ `[(45 + 3 + 2a, 5 + 15 + 2b),(35 + 21 + 2c, 40 + 36 + 2d)] = [(0 , 0),(0 , 0)]`
⇒ `[(48 + 2a , 20 + 2b),(56 + 2c , 76 + 2d)] = [(0 , 0),(0 , 0)]`
⇒ 48 + 2a = 0 ⇒ 2a = -48 ⇒ a = -24
20 + 2b = 0 ⇒ 2b = 20 ⇒ b = -10
56 + 2c = 0 ⇒ 2c = 56 ⇒ c = -28
76 + 2d = 0 ⇒ 2d = -76 ⇒ d = -38
Thus C = `[(-24 , -10),(-28, -38)]`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AB
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c