Advertisements
Advertisements
प्रश्न
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
उत्तर
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
`1/2 A - 1/3 A^t = 1/2[(-3, 6),(0, -9)] - 1/3[(-3, 0),(6, -9)]`
= `[((-3)/2, 3),(0, (-9)/2)] - [(-1, 0),(2, -3)]`
= `[(-3/2 - (-1), 3 - 0),(0 - 2, -9/2 - (-3))]`
= `[(-3/2 + 1, 3),(-2, -9/2 + 3)]`
= `[((-1)/2, 3),(-2, (-3)/2)]`
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,1),(0,-2)], B = [(4,1),(-3,-2)] and C = [(-3,2),(-1,4)]`. Find `A^2 + AC - 5B`
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Given `A = [(1, 4),(2, 3)] and B = |(-4-1),(-3 -2)|`
Find the matrix 2A + B
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`