Advertisements
Advertisements
प्रश्न
Let `A = [(2,1),(0,-2)], B = [(4,1),(-3,-2)] and C = [(-3,2),(-1,4)]`. Find `A^2 + AC - 5B`
उत्तर
Given,
`A = [(2,1),(0,-2)], B = [(4,1),(-3,-2)] , C = [(-3,2),(-1,4)]`
Thus
`A^2 = [(2,1),(0,-2)][(2,1),(0,-2)] = [(4+0,2-2),(0+0,0+4)] = [(4,0),(0,4)]`
`AC = [(2,1),(0,-2)][(-3,2),(-1,4)] = [(-6-1,4+4),(0+2, 0-8)] = [(-7,8),(2,-8)]`
`5B = 5[(4,1),(-3,-2)] = [(20, 5),(-15,-10)]`
`:. A^2 + AC - 5B = [(4,0),(0,4)] + [(-7,8),(2,-8)] - [(20,5),(-15,-10)] = [(-23,3),(17,6)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
If P = `|(14 , 17),(13,1)|` and Q = `|(2 , 1),(3 , -3)|` , find matrix M such that P - M = 3Q
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
Given A = `[(4, 7),(3, -2)]` and B = `[(1, 2),(-1, 4)]`, then A – 2B is ______.