Advertisements
Advertisements
प्रश्न
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
उत्तर
A = `[(4, 1),(2, 3)]`
Let B = `[(a, b),(c, d)]`
A2 = A x A = `[(4, 1),(2, 3)][(4, 1),(2, 3)]`
= `[(16 + 2, 4 + 3),(8 + 6, 2 + 9)]`
= `[(18, 7),(14, 11)]`
A + 2B = `[(4, 1),(2, 3)] + 2[(a, b),(c, d)]`
= `[(4, 1),(2, 3)] + [(2a, 2b),(2c, 3 + 2d)]`
= `[(4 + 2a, 1 + 2b),(2 + 2c, 3 + 2d)]`
∵ A2 = A + 2B
∴ `[(18, 7),(14, 11)] = [(4 + 2a, 1 + 2b),(2 + 2c, 3 + 2d)]`
Comparing the corresponding elements
4 + 2a = 18
⇒ 2a = 18 – 4 = 14
∴ a = 7
1 + 2b = 7
⇒ 2b = 7 – 1 = 6
∴ b = 3
2 + 2c = 14
⇒ 2c = 14 – 2 = 12
∴ c = 6
3 + 2d = 11
⇒ 2d = 11 – 3 = 8
∴ d = 4
Hence a = 7, b = 3, c = 6, d = 4
∴ B = `[(7, 3),(6, 4)]`.
APPEARS IN
संबंधित प्रश्न
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
If `M = [(0), (1)]` and `N = [(1),(0)]`, show that `3M + 5N = [(5),(3)]`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.