Advertisements
Advertisements
प्रश्न
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
उत्तर
A = `[(4, 1),(2, 3)]`
Let B = `[(a, b),(c, d)]`
A2 = A x A = `[(4, 1),(2, 3)][(4, 1),(2, 3)]`
= `[(16 + 2, 4 + 3),(8 + 6, 2 + 9)]`
= `[(18, 7),(14, 11)]`
A + 2B = `[(4, 1),(2, 3)] + 2[(a, b),(c, d)]`
= `[(4, 1),(2, 3)] + [(2a, 2b),(2c, 3 + 2d)]`
= `[(4 + 2a, 1 + 2b),(2 + 2c, 3 + 2d)]`
∵ A2 = A + 2B
∴ `[(18, 7),(14, 11)] = [(4 + 2a, 1 + 2b),(2 + 2c, 3 + 2d)]`
Comparing the corresponding elements
4 + 2a = 18
⇒ 2a = 18 – 4 = 14
∴ a = 7
1 + 2b = 7
⇒ 2b = 7 – 1 = 6
∴ b = 3
2 + 2c = 14
⇒ 2c = 14 – 2 = 12
∴ c = 6
3 + 2d = 11
⇒ 2d = 11 – 3 = 8
∴ d = 4
Hence a = 7, b = 3, c = 6, d = 4
∴ B = `[(7, 3),(6, 4)]`.
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
Given A = `[(4, 7),(3, -2)]` and B = `[(1, 2),(-1, 4)]`, then A – 2B is ______.
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.