Advertisements
Advertisements
प्रश्न
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
उत्तर
Given: `[(x, y)][(x),(y)] = [25]`
And `[(-x, y)][(2x),(y)] = [-2]`
[x2 + y2] = [25] and [–2x2 + y2] = [–2]
∴ x2 + y2 = 25 ...(i)
And –2x2 + y2 = –2 ...(ii)
On subtracting, we get 3x2 = 27
∴ x2 = `27/3` = 9
∴ x = ±3
i. ∵ x, y ∈ W
∴ x = 3
Substituting, the value of x in (i); we have
x2 + y2 = 25
`\implies` (3)2 + y2 = 25
`\implies` 9 + y2 = 25
`\implies` y2 = 25 – 9 = 16
∴ y = ±4
Hence x = 3, y = 4 ...(∵ x, y ∈ W)
ii. If x, y ∈ Z
∴ x = ±3 and y = ±4
APPEARS IN
संबंधित प्रश्न
Given `A = [(1, 4),(2, 3)] and B = |(-4-1),(-3 -2)|`
Find the matrix 2A + B
Evaluate if possible `[(3, 2)][(2),(0)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`