Advertisements
Advertisements
प्रश्न
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
उत्तर
Given: `[(x, y)][(x),(y)] = [25]`
And `[(-x, y)][(2x),(y)] = [-2]`
[x2 + y2] = [25] and [–2x2 + y2] = [–2]
∴ x2 + y2 = 25 ...(i)
And –2x2 + y2 = –2 ...(ii)
On subtracting, we get 3x2 = 27
∴ x2 = `27/3` = 9
∴ x = ±3
i. ∵ x, y ∈ W
∴ x = 3
Substituting, the value of x in (i); we have
x2 + y2 = 25
`\implies` (3)2 + y2 = 25
`\implies` 9 + y2 = 25
`\implies` y2 = 25 – 9 = 16
∴ y = ±4
Hence x = 3, y = 4 ...(∵ x, y ∈ W)
ii. If x, y ∈ Z
∴ x = ±3 and y = ±4
APPEARS IN
संबंधित प्रश्न
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AB
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
If `4[(5, x)] - 5[(y, -2)] = [(10, 22)]`, the values of x and y are ______.