Advertisements
Advertisements
प्रश्न
Find x and y, if `[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
उत्तर
`[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
`=> [(3x + 24, 12x + 56)] - [(6, -21)] = [(15, 10y)]`
`=> [(3x + 24 - 6, 12x + 56 + 21)] = [(15, 10y)]`
`=> [(3x + 18, 12x + 77)] = [(15, 10y)]`
Comparing the corresponding elements, we get
∴ 3x + 18 = 15
`=>` 3x = 15 – 18 = –3
∴ x = `(-3)/3` = –1
And 12x + 77 = 10y
`=>` 12 × (–1) + 77
`=>` 10y = –12 + 77
`=>` 10y = 65
∴ y = `65/10` = 6.5
Hence x = –1, y = 6.5
APPEARS IN
संबंधित प्रश्न
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Evaluate if possible `[(3, 2)][(2),(0)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)