Advertisements
Advertisements
प्रश्न
Find x and y, if `[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
उत्तर
`[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
`=> [(3x + 24, 12x + 56)] - [(6, -21)] = [(15, 10y)]`
`=> [(3x + 24 - 6, 12x + 56 + 21)] = [(15, 10y)]`
`=> [(3x + 18, 12x + 77)] = [(15, 10y)]`
Comparing the corresponding elements, we get
∴ 3x + 18 = 15
`=>` 3x = 15 – 18 = –3
∴ x = `(-3)/3` = –1
And 12x + 77 = 10y
`=>` 12 × (–1) + 77
`=>` 10y = –12 + 77
`=>` 10y = 65
∴ y = `65/10` = 6.5
Hence x = –1, y = 6.5
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
Given A = `[(4, 1),(2,3)]` and B = `[(1, 0),(-2, 1)]`, find A – B
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.